Abstract

The development of heterogeneous Co-based catalysts with an effective combination mode of Co/Fe and supporter, a facile synthetic method, and a low treatment cost is an important environment challenge for azo dyes degradation by peroxymonosulfate (PMS) activation. In this study, NaA zeolite supported CoxFey with various molar ratio of Fe/Si and Co/Fe was synthesized by a facile hydrothermal process, and used to activate PMS for Acid Orange 7 (AO7) degradation. NaA zeolite supported Co2Fe1 with the Fe/Si molar ratio of 1:10 showed superior catalytic performance compared with other NaA zeolite supported CoxFey. In a system containing 0.6g/L catalysts, 4mM PMS, pH 5 and T = 30℃, 95.8% AO7 and 79.1% COD conversion could be achieved at 20 and 60min, respectively, and the first order kinetic rate constant reached 0.14795min-1. Moreover, NaA zeolite supported Co2Fe1/PMS system exhibited excellent catalytic effect in a wide pH range of 3-9. Temperature had an obvious effect on AO7 degradation, and the activation energy was 31.36kJ/mol. HCO3- demonstrated an obvious depression on AO7 degradation, while Cl-, SO42- and H2PO4- had a relatively poor impact. Quenching experiments showed that both sulfate radicals ([Formula: see text]) and hydroxyl radicals (·OH) were generated in the PMS reaction system, and the [Formula: see text] was the dominant active radical. During 3 cycles experiments, an acceptable AO7 conversion ratio (91.8%) within 30min arrived, suggesting the good stability of NaA zeolite supported Co2Fe1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call