Abstract

In the domain of proton exchange membrane fuel cells (PEMFCs), the development of efficient and durable catalysts for the electro-oxidation of small organic molecules, especially of alcohols (methanol, ethanol, ethylene glycol, et al.) has always been a hot topic. A large number of related electrocatalysts with splendid performance have been designed and synthesized till now, while the preparation processes of most of them are demanding on experimental operations and conditions. Herein, we put forward a facile and handy method for the preparation of multifunctional Ni(OH)2-supported core-shell Ni@Pd nanocomposites (Ni(OH)2/Ni@Pd NCs) with the assistance of galvanic replacement reaction (GRR) at room temperature and ambient pressure. As expected, the Ni(OH)2 substrate can prevent the aggregation of core-shell (CS) Ni@Pd nanoparticles (NPs) and inhibit the formation of COads and further prevent Pd from being poisoned. The synergistic effect between CS Ni@Pd NPs and Ni(OH)2 substrate and the electronic effect between Pd shell and Ni core contribute to the outstanding electrocatalytic performance for methanol, ethanol, and ethylene glycol oxidation in alkaline condition. This study provides a succinct method for the design and preparation of efficient Pd-based electrocatalysts for alcohol electro-oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call