Abstract

In the present paper four platinum single crystal electrodes, two basal planes of Pt(111) and Pt(110) and two stepped surfaces of Pt(332) and Pt(331), were prepared and used in the study of electro-oxidation of ethylene glycol (EG). All of these Pt single crystal electrodes belong to the [1 1 0] zone of crystallography, and exhibit on their surface (111) symmetry sites or certain combinations of terraces of (111) symmetry with steps of (111) symmetry type. It has been found that as a result of a favourable steric matching of surface sites the Pt(110) electrode manifested a higher activity both for EG dissociative adsorption and oxidation than that of the Pt(111) electrode. The stepped surfaces of Pt(332) and Pt(331) operated with certain combinations of characteristics of Pt(111) and Pt(110). The best electrocatalytic properties have been obtained with a Pt(331) electrode, and this is attributed both to the configuration of the atomic arrangement and to the stability of this surface. In summary, the above results show that the performance of a given Pt single crystal electrode in EG oxidation at a potential below 1.0 V may be evaluated by three factors. 1. (1) The ability to resist self-poisoning (AB) which describes the difficulty of EG dissociative adsorption on the electrode surface. 2. (2) The activity for EG oxidation (AC). In considering that the threshold potential for EG oxidation on all electrodes is at 0.3 V and that the self-poisoning is encountered in PGPS, the activity for EG oxidation may be reasonably characterized by the intensity of the peak current acquired in NGPS near 0.6 V, which corresponds to the maximum current of EG oxidation on an activated (non-poisoned) surface of the electrode. 3. (3) The stability of activity during potential cycling (SA) between 0.05 and 1.0 V, which describes the resistance to the decrease of intensity of the EG oxidation current during voltammetric cycling. For the two basal planes studied, the AB and SA of Pt(111) are higher than those of Pt(110), but its AC is much lower than that of Pt(110). These differences are clearly related to the surface atomic arrangement of the two electrodes. As has been discussed above, the surface of Pt(111) is atomically smooth and stable during voltammetric cycling. The surface of Pt(110) presents, however, atomic steps and is reconstructed under experimental conditions, i.e. certain steric configurations are encountered on the Pt(110) surface. The high AC and the low AB may be assigned to a favourite stereographic matching during EG adsorption and oxidation on Pt(110). The two electrodes with stepped surfaces, Pt(332) and Pt(331), contain different densities of (110) sites, which are formed on the border between terrace and step, as shown in Fig. 8. The AB of these two electrodes has been observed at a moderate range between that of Pt(111) and the AB of Pt(110). With a majority of (111) sites on its surface, the electrode of Pt(332) operates at a relatively higher AC than Pt(111) does, and its SA is not as good as that of Pt(111) but is much better than the SA of a Pt(110) electrode. In all cases the highest AC and SA are obtained with a Pt(331) electrode. It may be seen from the profile of a (331) plane (shown by the cross-section of A-A in Fig. 8) that all atoms on the top of the surface participated in forming (110) sites, and the atom on the step has two functions — one is to form a (110) site with an atom located in the terrace of second layer and the other is to form a (111) site in the terrace of the same layer. It has been mentioned in the above discussions that the Pt(110) electrode keeps a higher AC due to favourite stereographic matching in EG adsorption and oxidation, but its SA is the worst, due to the instability of the surface. The highest AC and SA obtained with Pt(331) may be ascribed not only to the high density of (110) sites existing on the surface, but also to the stabilization of these (110) sites, and moreover, the synergy generated by the atomic arrangement of the Pt(331) surface may also contribute to the performance of the Pt(331) electrode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call