Abstract

Here we demonstrate a facile synthesis of nanoparticle-assembled mesoporous ZnO sheets by calcination of a novel sheet-like δ-Zn(OH)2 precursor at low temperature (100 °C). The mesoporous ZnO sheets were assembled by ultrasmall ZnO nanoparticles with an average crystal size less than 10 nm, having a high specific surface area of 87.63 m2 g−1. The high specific surface area, rich mesopores and oxygen vacancies, and the small crystal size of the ZnO nanoparticles contributed to the good NO2 sensing performance of the sensors. The comparison study indicated that the mesoporous ZnO sheets assembled by the smallest nanoparticles exhibited the highest response to ppm level of NO2 at room temperature (the response to 1 ppm of NO2 was 135%). Moreover, the sensor exhibited high response/recovery rates, full reversibility and good selectivity to NO2. Based on the surface depletion model, the higher response of the mesoporous ZnO sheets assembled by the smaller nanoparticles was attributed to their more significant narrowing of the conduction channel upon exposure to NO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.