Abstract

In this study, porous ZnO ultrathin nanosheets with abundant surface oxygen vacancies were prepared by a hydrothermal technique followed by an annealing method using graphene oxide (GO) as a template. The high specific surface area of GO with ultrathin thickness provided an important template for the ZnO ultrathin nanosheets. The as-prepared porous ZnO ultrathin nanosheets exhibited superior acetylacetone sensing performance. The sensor response of the porous ZnO ultrathin nanosheets was 191.1 for 100 ppm acetylacetone, which was approximately 4 times higher than that of ZnO clusters (prepared without GO template) at 340 °C. The porous ZnO ultrathin nanosheets also exhibited excellent selectivity and operational stability. The excellent gas sensing performance of the porous ZnO ultrathin nanosheets was due to their high specific surface area (130.5 m2/g) and abundant surface oxygen vacancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.