Abstract

Transition metal compositions (Fe, Co and Ni) have always been promising candidates for electromagnetic wave (EMW) absorbers. In this study, the FeCo layered double hydroxide (LDH) supported on raspberry-like carbon spheres (RCs) was synthesized by a simple hydrothermal method and the spontaneous electrostatic self-assembly process. The surface FeCo-LDH is then transformed into FeCo layered double oxide (LDO) with different compositions after calcination treatment (650 °C and 700 °C), forming a typical hierarchical structure. The sample calcined at 700 °C exhibited an ultra-wide effective absorption bandwidth (fe) (RL < −10 dB) of 7.4 GHz (from 10.6 to 18.0 GHz) at the matched thickness of 2.2 mm. The remarkable EM wave absorption properties are attributed to the strong interface polarization due to the various phase boundaries in LDO shell as well as sufficient heterointerfaces between LDO shell and RCs. It should be emphasized that LDH is rarely used for EMW absorption, and the use of LDH positively charged characteristics to fabricate hierarchical materials is a meaningful attempt and confirms the potential of LDH in EMW absorbing materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.