Abstract

Hydrogels based on natural polysaccharides have received special attention in the last decade due to their interesting features, such as availability, biocompatibility, biodegradability and safety. Such characteristics may make them sustainable and eco-friendly materials for water and wastewater treatment, meeting the concept of circular economy. In this study, a novel double-cross-linked alginate-based hydrogel has been successfully synthesized using epichlorhydrin and sodium trimetaphosphate (STMP) as cross-linker agents and then used for the removal of methylene blue (MB) dye under different operating conditions. The obtained hydrogel was deeply characterized by using various analytical techniques, namely Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and differential scanning calorimetry. Experimental results showed that the synthesized double cross-linked hydrogel with relatively high STMP concentration (0.26 M) has promising structural and textural properties. This material exhibited excellent removal ability towards MB with a maximum adsorption capacity of about 992 mg/g for an initial pH of 10. The kinetic and isotherm modeling study revealed that the pseudo-second-order and Freundlich models fitted well the measured adsorption experimental data. The MB adsorption process onto the synthesized hydrogel is exothermic, feasible and spontaneous. It mainly includes electrostatic interaction and hydrogen bonds. These findings suggest that double-cross-linked alginate-based hydrogel can be considered as an attractive and potential adsorbent for an effective cationic dye removal from aqueous environments. The use of such a green adsorbent for the treatment of organic-pollutants-rich industrial wastewaters promotes sustainability and circular economy concepts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.