Abstract

In the present study, Fe1.1(CrxMn1-x)1.9O4 nanoparticles (0 ≤ x ≤ 0.5) were successfully synthesized by a combustion method, and the influence of Cr substitution on the structural and magnetic properties of the obtained nanoparticles was studied by various methods. The structural analysis revealed that the sample with x = 0 has a tetragonal structure, while all Cr-doped samples crystallize into a cubic structure. Additionally, the results of TEM show that doping with chromium leads to an increase in particle size. The magnetic hysteresis loops demonstrate the behavior typical for soft magnetic materials with low coercivity and remanence magnetization. The magnetic measurements revealed that the saturation magnetization of the obtained nanoparticles demonstrates a decreasing trend with increasing Cr content. The influence of chromium doping on the observation change in saturation magnetization is discussed. Based on the results of temperature-dependent magnetization measurements, it was found that the temperature of a magnetic transition in synthesized nanoparticles depends on Cr content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.