Abstract
Modification of natural polysaccharides such as chitosan (CS), β‑cyclodextrin (β-CD), and alginic acid offers a promising strategy for the preparation of smart drug carriers, and latest innovations on such carriers are focused on stimuli-responsive biomaterials. In this study, highly hydrophilic three-demensional (3D) porous CS-grafted β-CD (CS-g-β-CD) was prepared through the Williamson ether synthesis reaction with epichlorohydrin (ECH) as the crosslinker and the consequent nucleophilic reaction between the epoxide ring of ECH and the primary amine of CS, which was then characterized by 1H nuclear (1H NMR), Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD) analysis, scanning electron microscope (SEM), thermogravimetry (TG), and N2 adsorption/desorption isotherms. When etoposide (VP16), an anti-cancer drug, was encapsulated in the CS-g-β-CD, the encapsulation ratio was up to 73.6%. Finally, the resultant CS-g-β-CD was successfully used as the responsive drug carrier for pH- and thermo-sensitive release of VP16. This work opens a new avenue for the preparation of stimuli-responsive drug carriers with modified natural polysaccharides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.