Abstract

The synthesis of efficient and sustainable heterogeneous Pd-based catalysts has been an active field of research due to their crucial role in carbon-carbon coupling reactions. In this study, we developed a facile and eco-friendly in situ assembly technique to produce a PdFe bimetallic hyper-crosslinked polymer (HCP@Pd/Fe) to use as a highly active and durable catalyst in the Ullmann reaction. The HCP@Pd/Fe catalyst exhibits a hierarchical pore structure, high specific surface area, and uniform distribution of active sites, which promote catalytic activity and stability. Under mild conditions, the HCP@Pd/Fe catalyst is capable of efficiently catalyzing the Ullmann reaction of aryl chlorides in aqueous media. The exceptional catalytic performance of HCP@Pd/Fe is attributed to its robust absorption capability, high dispersion, and strong interaction between Fe and Pd, as confirmed by various material characterizations and control experiments. Furthermore, the coated structure of a hyper-crosslinked polymer enables easy recycling and reuse of the catalyst for at least 10 cycles without any significant loss of activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call