Abstract

Cu2O–TiO2–ZnO ternary nano-heteroarchitectures were designed and successfully fabricated using titanium (IV) oxideacetylacetonate (TiO(acac)2) as a precursor and polyethyleneimine (PEI) as a binding agent. Field emission and photocatalytic activities of pure Cu2O nanopines, Cu2O–TiO2 core–shell nanopines and Cu2O–TiO2–ZnO ternary composites were investigated and compared. The results revealed that the as-prepared nano-heterojunctions and nanoparticles at the surface remarkably enhanced the field emission and photocatalytic activities of pure Cu2O nanopines. The as-prepared nano-heterojunctions induced interfacial states and energy band differentials, which caused electron transition and the inhibition of photo-induced electron–hole pair recombination. The nanoparticles at the surface formed thousands of surface nano-protrusions and active sites for photocatalytic chemical reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.