Abstract

We report a facile methodology for the synthesis of inorganic-organic hydrogels based on integrative assembly of aminopropyl magnesium phyllosilicate (aminoclay) and sodium salt of hyaluronic acid. The viscoelastic materials produced by electrostatic interactions and crosslinking of hyaluronan in the presence of exfoliated synthetic organoclay results in the formation of gel-like behavior retaining a high amount of water. This was confirmed by a rheological study revealing significant dominance of the elastic response over the entire deformation frequency range used. The mechanical strength of the aminoclay-hyaluronan hydrogels was found to be higher than that for related materials based on poly(vinylpyrrolidone)-aminoclay hydrogels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.