Abstract

Pristine silver nanoparticles and silver-graphene oxide nanoparticles have incorporated in Bismuth doped manganese oxide (Bi-MnOx) nanotubes by an ultra-sonication deposition method. Pristine Bismuth doped porous MnO2 has prepared by a non-ionic surfactant (Triton-X-100) assisted co-precipitation and heat treatment process. In the second stage, the biogenic method prepared very fine Ag nanoparticles with a quantum dot size of particles (below 10 nm). They have further deposited on the dried powder of Bi-MnOx by ultra-sonication fabricate the composite material for electrode application. The pure nanotube formation obtained for silver nanoparticle deposited Bi-MnOx (Ag-BiMnOx) and silver/GO nanoparticle(Ag-BiMnOx/GO) nanocomposites have clearly confirmed by high resolution transmission electron micrographs (HR-TEM). The nanotube diameter obtained in the range of 10–25 nm and length of nanotube obtained in the rage of 40–50 nm. Enhanced thermal stability has achieved for Ag-BiMnOx and Ag-BiMnOx/GO composite compared to pristine manganese oxide. Band gap values of prepared compoiste is calculated from Diffuse reflectance spectral data provide the bandgap values of Ag–Bi-MnOx/GO (1.93 eV) and Bi-MnOx (2.47 eV). As prepared graphene oxide modified Bi-MnOx composite modified electrode have further analyzed for hydrogen peroxide sensor and Oxygen reduction reactions (ORR). Silver nanoparticle-graphene oxide modified Bi-MnOx composite shows an enhanced electrochemical capacitance activity of 2.61 mF and improved electrochemical surface area of 65.25 cm2 towards clean energy technology application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call