Abstract

NASICON-type Li1.3Al0.3Ti1.7(PO4)3 (LATP) is a widely used solid electrolyte in solid-state lithium batteries, owing to its excellent chemical stability against moisture and high total ionic conductivity. However, traditionally, densification of LATP has been achieved through a high-temperature sintering process (approximately 1000 °C) owing to its poor sinterability. Herein, we report a facile synthesis route to obtain highly sinterable LATP solid electrolyte using tetrabutyl titanate (C16H36O4Ti) as the titanium source and incorporating the traditional solid-state reaction method. The synthetic LATP powder mixed with a low ratio of LiTiPO5 exhibited a hybrid crystalline-amorphous phase structure, which facilitated grain fusion, promoted structural homogeneity, and facilitated structural densification under low-temperature sintering. The sintered LATP pellet, which exhibited an interconnected structure and indistinct grain boundaries, achieved a relative density of >90% and an ionic conductivity of 0.667 mS/cm at a sintering temperature of only 750 °C. Additionally, we systematically studied and demonstrated the synthesis reaction mechanism, sintering behavior, and ionic diffusion kinetics of LATP electrolytes. Our study paves the way for synthesizing highly sinterable LATP solid electrolytes using a simple, additive-free, and cost-effective method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call