Abstract

Here, we discovered that starch could be straightforwardly processed into optically transparent electroconductive films by compression molding at a relatively mild temperature (55 or 65 °C), much lower than those commonly used in biopolymer melt processing (typically over 150 °C). Such significantly reduced processing temperature was achieved with the use of an ionic liquid plasticizer, 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]). A higher [C2mim][OAc] content, lower processing temperature (55 °C), and/or higher relative humidity (RH) (75%) during the sample postprocessing conditioning suppressed the crystallinity of the processed material. The original A-type crystalline structure of starch was eliminated, although small amounts of B-type and V-type crystals were formed subsequently. The starch crystallinity could be linked to the mechanical properties of the films. Moreover, the processing destroyed the original lamellar structure of starch, and the amorphous starch processed with [C2mim][OAc]/wa...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.