Abstract
Rice flour is produced by various methods for use in the food industry, but little is known about how the structure of starch is affected during rice flour production. In this study, the crystallinity, thermal properties, and structure of starch in rice flour were investigated after treatment with a shearing and heat milling machine (SHMM) at different temperatures (10-150 °C). Both the crystallinity and gelatinization enthalpy of starch showed an inverse relationship with the treatment temperature; rice flour treated with the SHMM at higher temperatures showed lower crystallinity and gelatinization enthalpy than that treated at lower temperatures. Next, the structure of undegraded starch in the SHMM-treated rice flour was analyzed by gel permeation chromatography. A significant reduction in the molecular weight of amylopectin was observed at high treatment temperatures. Chain length distribution analysis showed that the proportion of long chains (degree of polymerization (DP) > 30) in rice flour decreased at temperatures ≥ 30 °C. By contrast, the molecular weight of amylose did not decrease. In summary, the SHMM treatment of rice flour at high temperatures resulted in starch gelatinization, and the amylopectin molecular weight decreased independently, due to the cleavage of amorphous regions connecting the amylopectin clusters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.