Abstract
While position emission tomography (PET) is an important molecular imaging technique for both preclinical research and clinical disease diagnosis/prognosis, chelator-free radiolabeling has emerged as a promising alternative approach to label biomolecules or nanoprobes in a facile way. Herein, starting from bottom-up synthesized WS2 nanoflakes, this study fabricates a unique type of WS2 /WOx nanodots, which can function as inherent hard oxygen donor for stable radiolabeling with Zirconium-89 isotope (89 Zr). Upon simply mixing, 89 Zr can be anchored on the surface of polyethylene glycol (PEG) modified WS2 /WOx (WS2 /WOx -PEG) nanodots via a chelator-free method with surprisingly high labeling yield and great stability. A higher degree of oxidation in the WS2 /WOx -PEG sample (WS2 /WOx (0.4)) produces more electron pairs, which would be beneficial for chelator-free labeling of 89 Zr with higher yields, suggesting the importance of surface chemistry and particle composition to the efficiency of chelator-free radiolabeling. Such 89 Zr-WS2 /WOx (0.4)-PEG nanodots are found to be an excellent PET contrast agent for in vivo imaging of tumors upon intravenous administration, or mapping of draining lymph nodes after local injection.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have