Abstract

We report on the facile preparation of highly scattering metal-coated polystyrene (PS) latex beads by using solvent-controlled heterocoagulation. Starting with an aqueous dispersion of PS beads and poly(vinyl pyrrolidone)-capped metal nanoparticles (NPs), homogeneous and dense metal coatings were obtained by the controlled addition and removal of tetrahydrofuran (THF). Different sizes (30, 60, and 80 nm), chemistries (gold and silver), and shapes (sphere and cube) of NPs were successfully incorporated on commercially available PS beads. The resulting metal coated-PS microspheres exhibited highly enhanced scattering and tunable optical characteristics useful for biomedical imaging, sensors, and opto-electronic devices. The fabricated composite beads were stable, with no loss of metal coating, during long-term water storage. The morphology and coverage of the metal coating, and the bead's optical properties, were controllable over a wide range by the concentration of THF and metal NP, and NP size, shape, and chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.