Abstract

This work aimed to study the development and properties of Bi-doped ZnO/β-Bi2O3/Carbon xerogel composites towards visible light photocatalysis applications. The materials were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, dispersive energy spectroscopy, infrared spectroscopy, nitrogen adsorption isotherms, Raman spectroscopy, diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The photocatalytic activity of the developed composites was evaluated through the photodegradation of the 4-chlorophenol molecule and by chronoamperometry tests. The results obtained show that the calcination temperature poses a major influence in the final structure of the materials developed. The calcination temperature of 600 °C resulted in the formation of the β-Bi2O3 and Bi0 phases, consequently enhancing the photocatalytic activity of the composites due to the increased charge mobility provided by the heterojunctions between zinc oxide, carbon xerogel, bismuth oxide and metallic bismuth. The composite with intermediate bismuth composition (XC/ZnO–Bi2O3 5%) displayed the best photocatalytic response among the materials tested, which was confirmed by its increased photocurrent generation capability. The photocatalytic mechanism is highly dependent in the generation of hydroxyl radicals and the composite presents good reusability properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call