Abstract

This study focuses on the modification of a commercial nanofiltration (NF) membrane by an in-situ reaction to load silver nanoparticles (AgNPs) for anti-biofouling. Poly (vinyl alcohol) (PVA) was coated onto the NF membrane firstly, and silver salt was then deposited on the surface of PVA layer. Through thermal reduction, AgNPs with 10–20 nm in diameter were formed and immobilized onto the membrane surface by the interaction between AgNPs and PVA, as confirmed by UV–vis absorption spectrum, SEM and XPS analysis. Compared to the pristine NF90 membrane, the PVA composite membranes (NF90-PVA) and AgNPs (NF90-PVA-AgNPs) modified membranes exhibit lower water flux and slightly higher salt rejection. Release of silver ion experiments were assessed via batch method, and the results indicate silver ion can be released from the AgNPs modified membrane continuously and steadily, which may be responsible for the improved and long-time antibacterial ability of the membrane. Due to the simplicity of the method, the ability to immobilize the AgNPs to avoid leaching out, and the strong antibacterial activity, this NF90-PVA-AgNPs composite membrane displays potential applications in industrial water-treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.