Abstract
One of the ways to turn concrete into smart concrete involves the incorporation of conductive fillers. These fillers should be evenly distributed in the matrix to enable the charge propagation necessary for sensing. To homogenize the mixture, typical surface-active chemical compounds are routinely employed. Unfortunately, their presence often negatively impacts the characteristics of concrete. In this work, we show that conductive multi-walled carbon nanotubes (MWCNTs) can be included in the concrete matrix by using off-the-shelf lignosulfonate-based plasticizers. These plasticizers showed a much-improved capability to disperse MWCNTs compared to other routinely used surfactants. They also prevented a significant deterioration of the consistency of the mixture and inhibited the acceleration of the hydration process by MWCNTs. In concretes with MWCNTs and lignosulfonate-based plasticizers, the mechanical properties were largely preserved, while the nanocomposite became electrically conductive. Consequently, it enabled evaluation of the condition of the material by electrical impedance measurements.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.