Abstract
In this paper, novel morphology correlation between silver nanowires (AgNWs) and cobalt (Co)-doped ZnO (Co-ZnO) flake-like thin films (nanowire/flake-like) has been proposed for enhanced photoelectrochemical (PEC) water splitting activity. Here in, high-quality AgNWs/Co-ZnO heterostructures enabled superior visible light water splitting activity compared to the pure ZnO and AgNWs/ZnO. To address the strategic effect of AgNWs coupling and transition metal (Co-2 at%) doping into the ZnO host lattice, we have carried out the X-ray diffraction, field emission scanning microscopy, X-ray photoelectron spectroscopy, UV–Vis transmittance, water contact angle and PEC analyses. In this way, PEC water splitting activity was mainly examined by linear sweep voltammetry (I-V), amperometric I-t and photoconversion efficiency (η) studies. The experimental results provide clear evidence of morphology correlation between AgNWs and Co-ZnO flake-like structures for strong visible light absorption. Specifically, AgNWs/Co-ZnO composites exhibited significant enhancement in the photocurrent density (7.0 × 10−4 A/cm2) than AgNWs/ZnO (3.2 × 10−4 A/cm2) and pure ZnO (1.5 × 10−6 A/cm2). As a result, detailed AgNWs/Co-ZnO geometry has great potential for photoconversion efficiency (0.73%). In a word, the merits of controllable AgNWs/Co-ZnO heterostructure are proposed to improve the visible light harvesting and charge carrier generation for energy conversion devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.