Abstract
A kind of Co-Fe Prussian blue analogues (Co-Fe PBAs), cobalt hexacyanoferrate Co3[Fe(CN)6]2, and graphene oxide (GO) were combined to synthesize magnetically separable Co-Fe PBAs@rGO nanocomposites through a simple two-step hydrothermal method. The crystalline structure, morphology and textural properties of the Co-Fe PBAs@rGO nanocomposites were characterized. The catalytic performance of the nanocomposites was evaluated by PMS activation, with Levofloxacin Hydrochloride (LVF) as the target contaminant. Synergistic interactions between the Co-Fe PBAs and rGO prevented the aggregation of the Co-Fe PBAs nanoparticles, which resulted in enhanced degradation efficiencies. The influence of several critical parameters was investigated, including the reaction temperature, PMS and Co-Fe PBAs@rGO catalyst concentrations, solution pH and salt content. LVF degradation was favored at higher catalyst and PMS concentrations, high temperatures, and in neutral or weak acidic solutions. Sulphate radicals were the dominant active species in the Co-Fe PBAs@rGO/PMS system. In addition, the Co-Fe PBAs@rGO exhibited no significant decrease in LVF degradation efficiency following five catalytic cycles. Thus, the as-prepared Co-Fe PBAs@rGO nanocomposite catalyst might be applied to the removal of hard-to-degrade organics owing to its high catalytic ability to activate PMS, as well as its good reusability and recyclability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.