Abstract

Fe(II)-catalyzed PMS process was widely used in the degradation of refractory pollutants in wastewater, while its performance was restricted by the slow regeneration efficiency of Fe(II). Herein, caffeic acid (CFA), a representative of hydroxycinnamic acids, was introduced into Fe(III)/PMS system to accelerate the transformation of Fe(III) to Fe(II) and promote the removal of bisphenol A (BPA). Under optimum condition of 0.1 mM CFA, 0.05 mM Fe(III), and 0.5 mM PMS, almost complete removal of BPA can be achieved within 20 min, which was roughly 6.2 times higher than that in Fe(III)/PMS system. As the addition of CFA into Fe(III)/PMS system, pH application range was widened from acidic to alkaline conditions. The reduction and chelation of CFA expedited the Fe(III)/Fe(II) cycle by forming CFA-Fe chelate, thereby facilitating the PMS activation. Based on LC-MS analysis and DFT calculation, the intermediate products of CFA were found to play a decisive role in boosting the regeneration of Fe(II), and the toxicity of these intermediates towards organisms was evaluated by ECOSAR. The alcohol-scavenging and chemical probe tests certified that hydroxyl radical (•OH), sulfate radical (SO4•-), and Fe(IV) coexisted in Fe(III)/CFA/PMS system, and the second-order reaction rate constants of •OH and SO4•- reacted with CFA were calculated to be 3.16✕109 and 2.30✕1010 M−1 s−1, respectively. Two major degradation pathways of BPA, •OH addition and SO4•- induced hydroxylation reaction, were proposed. This work presented a novel green phenolic compound that expedited the Fe(II)-catalyzed PMS activation process for the treatment of organic contaminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.