Abstract

Cellulose-based separators have great application prospects in the field of lithium-ion batteries (LIBs) due to their excellent wettability and thermal stability. However, most current cellulose-based separators come from high-cost nanocellulose and bacterial cellulose. Herein, regenerated cellulose (RC) separators were prepared from dissolving pulp with different degrees of polymerization (DPs) by using the NaOH/urea/thiourea dissolution system as well as a nonsolvent-induced phase separation method. The results showed that the DP of cellulose had a significant influence on the mechanical properties, pore structure, and electrochemical properties of the resultant RC separator. An appropriate increase in the DP could improve the mechanical strength, porosity, and ionic conductivity of the separator. The RC separator with a DP of 599 exhibited the best performance with a porosity of 56.1 %, an average pore size of 305 nm, an electrolyte uptake of 339 %, a tensile strength of 38.3 MPa, and an ionic conductivity of 1.88 mS·cm−1. The lithium-ion battery prepared with the optimal RC separator had a specific capacity of 156.55 mAh/g for 100 cycles at a current density of 0.5 C and a coulombic efficiency of more than 96 %, which was a clear advantage over the commercially available Celgard2400 and cellulose separators. This work makes contributions to the development of high-performance LIBs separators from cellulose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.