Abstract

Glycidyl methacrylate (GMA) was grafted onto the surface of HDPE particles by radiation grafting and emulsion graft copolymerization. And subsequent ring-opening reaction of expoxy groups in poly-GMA graft chains with N-methylglucamine (NMG) was conducted to synthesis the boron adsorbent. The synthesis condition (radiation dose and NMG concentration) was optimized and characterized by IR and SEM. Adsorption behaviors of the boron adsorbent for boron removal presented that adsorption kinetics was well described by pseudo-second-order kinetic mode. The adsorption isothermal was well fitted with both Langmuir and Freundlich isotherm models. The adsorption capacity for boron reached 15.63 mg/g at optimal pH 8. Dynamic experiment revealed that boron could be efficiently adsorbed by the boron adsorbent and fully desorbed using 13 BV of 1 mol/L HCl.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.