Abstract
Developing materials that combine superhydrophobic properties with high optical transmittance poses a significant challenge. In this study, hydroxyl-terminated polydimethylsiloxane (HT-PDMS) and isosorbide (ISB) were polymerized in a single step to create a covalently bonded optical polycarbonate material. By inducing the formation of micro-papillary and lotus-shaped nanoscale structures via a solvent-triggered process, we significantly enhanced the “air cushion” effect, achieving a structure scale of approximately 5–7 μm. This resulted in a water contact angle of 157° while maintaining over 90 % optical transmittance. The structures were uniformly distributed throughout the polymer matrix, leading to a 500 % increase in tensile strength at break compared to pure isosorbide polycarbonate, with a maximum strength exceeding 50 MPa. These multifunctional materials show great promise for applications in smart windows, solar panels, camera lenses, and other optoelectronic devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have