Abstract

Flexible pressure sensors have attracted intense attention because of their widespread applications in electronic skin, human-machine interfaces, and healthcare monitoring. Conductive porous structures are always utilized as active layers to improve the sensor sensitivities. However, flexible pressure sensors derived from traditional foaming techniques have limited structure designability. Besides, random pore distribution causes difference in structure and signal repeatability between different samples even in one batch, therefore limiting the batch production capabilities. Herein, we introduce a structure designable lattice structure pressure sensor (LPS) produced by bottom-up digital light processing (DLP) 3D printing technique, which is capable of efficiently producing 55 high fidelity lattice structure models in 30 min. The LPS shows high sensitivity (1.02 kPa-1) with superior linearity over a wide pressure range (0.7 Pa to 160 kPa). By adjusting the design parameters such as lattice type and layer thickness, the electrical sensitivities and mechanical properties of LPS can be accurately controlled. In addition, the LPS endures up to 60000 compression cycles (at 10 kPa) without any obvious electrical signal degradation. This benefits from the firm carbon nanotubes (CNTs) coating derived from high-energy ultrasonic probe and the subsequent thermal curing process of UV-heat dual-curing photocurable resin. For practical applications, the LPS is used for real time pulse monitoring, voice recognition and Morse code communication. Furthermore, the LPS is also integrated to make a flexible 4 × 4 sensor arrays for detecting spatial pressure distribution and a flexible insole for foot pressure monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.