Abstract
AbstractDasatinib (DAS) has recently gained significant interest for its anticancer potential. Yet, the lipophilicity inherent in DAS limited its potential use as a chemotherapeutic drug. This study aimed to examine the effectiveness of polyethylene glycol‐polycaprolactone (PEG‐PCL) as a nanocarrier for DAS to increase its anticancer capabilities. The DAS‐loaded PEG‐PCL nanoparticles (termed as DAS@PEG‐PCL NPs) were characterized using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Morphological staining and MTT tests were employed to investigate drug‐loaded nanoparticles' apoptotic and anti‐proliferative effects. The MTT assay demonstrated that incorporating DAS onto PEG‐PCL NPs resulted in a dose‐dependent increase in cytotoxicity in A549 (lung cancer) and HeLa (cervical cancer) cells. The A549 cancer cells were analyzed for their morphology using the acridine orange/ethidium bromide (AO/EB) and DAPI staining techniques. Overall, these findings demonstrate that the polymeric PEG‐PCL nanoparticle systems hold great potential as a novel therapeutic strategy for cancer treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.