Abstract
Deguelin (DGL) is a natural flavonoid reported to exhibit antitumor effects in breast cancer (BC). PEG-PCL (Polyethylene Glycol- Polycaprolactone), as polymeric micelles, has biodegradability and biocompatibility. The aim of this study was to investigate whether the nanoparticular delivery system, PEG-PCL could improve the bioavailability of DGL for suppressing proliferation of BC cells. PEG-PCL polymers were first prepared by ring-opening polymerization, and DGL and paclitaxel (PTX)-loaded PEG-PCL nano-micelles were formulated via the film dispersion method. The composition and molecular weight of PEG-PCL were analyzed by nuclear magnetic resonance and fourier Transform infrared spectroscopy (FTIR) spectra. Particle size, surface potential and hemolytic activity of micelles were assessed by dynamic light scattering, transmission electron microscopy and hemolysis assay, respectively. Then proliferation and apoptosis of MDA-MB-231 and MDA-MB-468 cells were tested with Edu staining, CCK-8, TUNEL staining, and Flow cytometer. Caspase 3 expression was also assessed by Western blot. Our results first indicated that PEG2000-PCL2000 was successfully synthesized. DGL and PTX-loaded PEG-PCL nano-micelles were rounded in shape with a particle size of 35.78 ± 0.35 nm and a surface potential of 2.84 ± 0.27 mV. The micelles had minimal hemolytic activity. Besides, we proved that DGL and PTX-loaded PEG-PCL nano-micelles could suppress proliferation and induce apoptosis in BC cells. The DGL and PTX-loaded PEG-PCL nano-micelles constructed in this study had a prominent inhibitory role on proliferation and a remarkable promotional role on apoptosis in BC cells. This study proposes that nano-micelles formed by PEG-PCL can enhance the cytotoxicity of Paclitaxel against breast cancer cells, and concurrently, the loading of Deguelin may further inhibit cell proliferation. This presents a potential for the development of a novel therapeutic strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.