Abstract
The present work is emphasized on converting toxic cigarette butts (CBs) into highly fluorescent N,S-codoped carbon dots by a facile hydrothermal approach and exploring their multiple applications. The as-produced carbon dots (CBCDs) exhibited bright and stable fluorescence with a quantum yield of 26% and used as a label-free probe for “on–off–on” sequential detection of Fe3+ and ascorbic acid (AA). The fluorescence of CBCDs can be significantly quenched by Fe3+ ions through static quenching and restored upon the subsequent addition of AA due to the reduction of Fe3+ to Fe2+ by AA. This nanoprobe presented great selectivity and excellent sensitivity to Fe3+ and AA with a detection limit of 0.13 and 0.2 μM, respectively. Furthermore, the nanoprobe was extended to biosystem (intracellular detection) and successfully applied for the detection of Fe3+ in real water (tap, bore, and pond) and AA in biological samples (human urine and serum). In addition, we have constructed an IMPLICATION logic gate based on these unique sensing characteristics. The “visible–invisible” and “UV–visible” property explored their use as invisible ink for security applications. Furthermore, highly photostable fluorescent polymer films were prepared by incorporating CBCDs in poly(vinyl alcohol). It is anticipated that the strong and stable fluorescence emission nature of these films might find direct or indirect applications in various optical/optoelectronic devices, ranging from fluorescent displays to light-emitting diodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.