Abstract

In this paper, a facile and rapid fluorescence “on–off-on” strategy for the detection of chromium (Cr(VI)) and ascorbic acid (AA) was developed, which was based on the water-soluble carbon dots (CDs). The CDs was synthesized by a microwave-assisted treatment of L-tartaric acid, citric acid, and urea. The CDs have many advantages, such as high fluorescence quantum yield (20.5%) and good fluorescence stability. Based on inner filter effect (IFE) and static quenching, the fluorescence of the CDs can be quenched by Cr(VI) quickly; while the reduction of IFE and reducing action can make the fluorescence of the CDs recover by AA efficiently. Moreover, under the optimal experimental conditions, the CDs had a good detection performance for Cr(VI) in the range of 0.8 ∼ 189 µM with the limit of detection (LOD) of 0.16 µM. The linear detection for AA was ranged from 0.43 to 25.7 µM with a LOD of 0.1 µM. More importantly, the as-constructed fluorescence detecting platform was successfully applied for Cr(VI) and AA detection in the environmental samples and fruit samples, respectively. In addition, the application potential of the CDs in fluorescent films and anti-counterfeiting materials was further discussed in detail. This work will provide a novel idea for designing a portable sensor based on the CDs to quickly and sensitively detect Cr(VI) and AA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call