Abstract
A novel concept for performing stoichiometric and catalytic chemical transformations has been developed that is based on the limited miscibility of partially or fully fluorinated compounds with nonfluorinated compounds. A fluorous biphase system (FBS) consists of a fluorous phase containing a dissolved reagent or catalyst and another phase, which could be any common organic or nonorganic solvent with limited or no solubility in the fluorous phase. The fluorous phase is defined as the fluorocarbon (mostly perfluorinated alkanes, ethers, and tertiary amines)-rich phase of a biphase system. An FBS compatible reagent or catalyst contains enough fluorous moieties that it will be soluble only or preferentially in the fluorous phase. The most effective fluorous moieties are linear or branched perfluoroalkyl chains with high carbon number; they may also contain heteroatoms. The chemical transformation may occur either in the fluorous phase or at the interface of the two phases. The application of FBS has been demonstrated for the extraction of rhodium from toluene and for the hydroformylation of olefins. The ability to separate a catalyst or a reagent from the products completely at mild conditions could lead to industrial application of homogeneous catalysts or reagents and to the development of more environmentally benign processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.