Abstract

Anatase TiO2 shells assembled on hollow glass microspheres (HGM) with tunable morphologies were successfully prepared through a controllable chemical precipitation method with urea as the precipitator. Thus, glass/TiO2 core/shell composite hollow spheres with low particle density (0.40g/cm3) were fabricated. The phase structures, morphologies, particle sizes, shell thicknesses, and chemical compositions of the composite microspheres were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). The morphology of the TiO2 shell can be tailored by properly monitoring the reaction system component and parameters. The probable growth mechanism and fabrication process of the core/shell products involving the nucleation and oriented growth of TiO2 nanocrystals on hollow glass microspheres was proposed. A low infrared radiation study revealed that the radiation properties of the products are greatly influenced by the unique product shell structures. A thermal conductivity study showed that the TiO2/HGM possess low thermal conductivity that is similar to that of the pristine HGMs. This work provides an additional strategy to prepare low-density thermal insulating particles with tailored morphologies and properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call