Abstract
The low bactericidal activity and poor osteogenic activity of Ti limit the use of this metal in dental implants by increasing the risk of their periimplantitis-induced failure. To address this problem, we herein surface-modify biomedical Ti through the plasma immersion coimplantation of Mg and Cu ions and examine the physicochemical properties and bio-/hemocompatibility of the resulting materials as well as their activity against periimplantitis-causing bacteria, namely Streptococcus mutans and Porphyromonas gingivalis. The reactive oxygen species release (ROS) was assessed via the 2′7′-dichlorodihydrofluorescein diacetate (DCFH-DA) assay. The best-performing sample Mg/Cu(8/10)-Ti promotes cell proliferation and initial cell adhesion while exhibiting high hydrophilicity, outstanding activity against the aforementioned pathogens, and good bio-/hemocompatibility. Additionally, higher levels of cellular ROS generation in S. mutans and P. gingivalis could provide insight into the antibacterial mechanisms involved in Mg/Cu(8/10)-Ti. Thus, Mg/Cu coimplantation is concluded to endow the Ti surface with high bacteriostatic activity and biocompatibility, paving the way to the widespread use of Ti-based dental implants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.