Abstract

Porous anatase TiO2 spheres have been synthesized by a microwave-assisted hydrothermal reaction of spherical particle precursors followed by annealing in air. The synthesized TiO2 spheres are formed by interconnected nanocrystals with size of 8.7nm in average and have grain diameters of 250–400nm. After annealing at 500°C, the TiO2 samples maintain spherical shape and develop highly mesoporous characteristics with a specific surface area of 151m2g−1. The TiO2 samples annealed at 750°C consist of larger aggregated particles with diameters of 500–900nm and still retain mesoporous anatase structure, but with a reduced specific surface area of 25.6m2g−1. Electrochemical studies reveal that the porous TiO2 spheres annealed at 500°C own very high and stable lithium ion (Li+) storage capacities of 207, 184, 166, and 119mAhg−1 at 0.5, 1, 2, and 5C (850mAg−1) rates, respectively, owing to their highly porous nanostructures and fine spherical morphology. In contrast, the TiO2 spheres annealed at 700°C exhibit modest electrochemical performance due to their reduced pore structures and larger crystallite size. The prepared porous TiO2 spherical particles show great promise for use as high performance anode materials for lithium ion batteries (LIBs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.