Abstract

This paper proposes asystem forthe facial expression recognition. Firstly, we perform noise reduction by a median filter of facial expression image. Then, a cross-correlation of optical flow and mathematical models from the facial points are used. To define these facial points of interest in the first frame of an input face sequence image, which utilize manually marker. The facial points were automatically tracked by a cross-correlation, which is based on optical flow,and then extracted the feature vectors. The mathematical model extracts features from the feature vectors. An ELMAN neural network was applied to classify expressions. The performances of the proposed facial expressions recognition were computed by Cohn–Kanade facial expressions database. This proposed approach achieved a high recognition rate.KeywordsNoise reductionMedian filterOptical flowELMANNeural network

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.