Abstract
BackgroundManitoba-oculo-tricho-anal (MOTA) syndrome is a rare syndrome with only 27 cases reported worldwide so far, but none was reported in the population of Eastern Asia. Such extremely low prevalence might be contributed by misdiagnosis due to its similarities in ocular manifestations with facial cleft. In our study, we discovered the first case of MOTA syndrome in the population of China, with 2 novel FRAS1 related extracellular matrix 1 (FREM1) gene stop-gain mutations confirmed by whole exome sequencing.Case presentationA 12-year-old Chinese girl presented with facial cleft-like deformities including aberrant hairline, blepharon-coloboma and broad bifid nose since birth. Whole exome sequencing resulted in the identification of 2 novel stop-gain mutations in the FREM1 gene. Diagnosis of MOTA syndrome was then established.ConclusionsWe discovered the first sporadic case of MOTA syndrome according to clinical manifestations and genetic etiology in the Chinese population. We have identified 2 novel stop-gain mutations in FREM1 gene which further expands the spectrum of mutational seen in the MOTA syndrome. Further research should be conducted for better understanding of its mechanism, establishment of an accurate diagnosis, and eventually the exploitation of a more effective and comprehensive therapeutic intervention for MOTA syndrome.
Highlights
Manitoba-oculo-tricho-anal (MOTA) syndrome is a rare syndrome with only 27 cases reported worldwide so far, but none was reported in the population of Eastern Asia
We discovered the first sporadic case of MOTA syndrome according to clinical manifestations and genetic etiology in the Chinese population
We have identified 2 novel stop-gain mutations in FRAS1 related extracellular matrix 1 (FREM1) gene which further expands the spectrum of mutational seen in the MOTA syndrome
Summary
We discovered the first sporadic case of MOTA syndrome according to clinical manifestations and genetic etiology in the Chinese population. We have identified 2 novel stop-gain mutations in FREM1 gene which further expands the spectrum of mutational seen in the MOTA syndrome. Further research should be conducted for better understanding of its mechanism, establishment of an accurate diagnosis, and eventually the exploitation of a more effective and comprehensive therapeutic intervention for MOTA syndrome
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.