Abstract
BackgroundDihidropyrimidinase (DHP) deficiency is an inherited inborn error of pyrimidine metabolism with a variable clinical presentation and even asymptomatic subjects. Dihydropyrimidinase is encoded by the DPYS gene, thus pathogenic mutations in this gene can cause DHP deficiency. To date, several variations in the DPYS gene have been reported but only 23 of them have been confirmed to be pathogenic. Therefore, the biochemical, clinical and genetic aspects of this disease are still unclear.Case presentationHere, we report a 22-year-old woman with DHP deficiency. To identify the genetic cause of DHP deficiency in this patient, Whole Exome Sequencing (WES) was performed, which revealed a novel homozygote stop gain mutation (NM_001385: Exon 9, c.1501 A > T, p.K501X) in the DPYS gene. Sanger sequencing was carried out on proband and other family members in order to confirm the identified mutation. According to the homozygote genotype of the patient and heterozygote genotype of her parents, the autosomal recessive pattern of inheritance was confirmed. In addition, bioinformatics analysis of the identified variant using Mutation Taster and T-Coffee Multiple Sequence Alignment showed the pathogenicity of mutation. Moreover, mRNA expression level of DPYS gene in the proband’s liver biopsy showed about 6-fold reduction compared to control, which strongly suggested the pathogenicity of the identified mutation.ConclusionsThis study identified a novel pathogenic stop gain mutation in DPYS gene in a DHP deficient patient. Our findings can improve the knowledge about the genetic basis of the disease and also provide information for accurate genetic counseling for the families at risk of these types of disorders.
Highlights
Dihidropyrimidinase (DHP) deficiency is an inherited inborn error of pyrimidine metabolism with a variable clinical presentation and even asymptomatic subjects
Comparative threshold cycle method (2-ΔΔCT) was used to compare the relative expression of DPYS gene between the patient’s liver tissue and her sister’s liver tissue who genetically confirmed to be unaffected (the liver biopsy was performed in her sister due to the increased levels of Alanine transaminase (ALT), Aspartate transaminase (AST), Alk phosphatase and she was suspected to be affected with Autoimmune hepatitis due to a positive test for Anti-nuclear antibody (ANA) and Anti-smooth muscle antibody (ASMA))
Next Generation Sequencing (NGS) data revealed a novel homozygous nonsense mutation in exon nine of the DPYS gene that resulted in an early stop codon and premature truncation of the protein at codon 501
Summary
This study identified a novel pathogenic stop gain mutation in DPYS gene in a DHP deficient patient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.