Abstract
Inspired by the facial amphiphilic nature and antimicrobial efficacy of many antimicrobial peptides, this work reported facial amphiphilic bicyclic naphthoic acid derivatives with different ratios of charges to rings that were installed onto side chains of poly(glycidyl methacrylate). Six quaternary ammonium-charged (QAC) polymers were prepared to investigate the structure-activity relationship. These QAC polymers displayed potent antibacterial activity against various multi-drug resistant (MDR) gram-negative pathogens such as Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. Polymers demonstrated low hemolysis and high antimicrobial selectivity. Additionally, they were able to eradicate established biofilms and kill metabolically inactive dormant cells. The membrane permeabilization and depolarization results indicated a mechanism of action through membrane disruption. Two lead polymers showed no resistance from MDR-P. aeruginosa and MDR-K. pneumoniae. These facial amphiphiles are potentially a new class of potent antimicrobial agents to tackle the antimicrobial resistance for both planktonic and biofilm-related infections.
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have