Abstract
In this paper, we propose a near real-time effective face recognition system for consumer applications. Since the nature of application domain requires real time result and better accuracy, it poses a serious challenge. To address this challenge, we study various classification techniques, namely, support vector machine (SVM), linear discriminant analysis (LDA) and K nearest neighbor (KNN). We observe that although KNN is as effective as SVM but KNN prohibits its usage due to high response time when data is high dimensional. To speed up KNN retrieval, we propose a feature reduction technique using principle component analysis (PCA) to facilitate near real time face recognition along with better accuracy. We apply KNN after we reduce the number of features by PCA. Hence, we test various classification approaches, namely, SVM, KNN, KNN with PCA, LDA, and LDA with PCA on a benchmark dataset and demonstrate the effectiveness of KNN with PCA over SVM and LDA
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.