Abstract
Deep learning models currently achieve human levels of performance on real-world face recognition tasks. We review scientific progress in understanding human face processing using computational approaches based on deep learning. This review is organized around three fundamental advances. First, deep networks trained for face identification generate a representation that retains structured information about the face (e.g., identity, demographics, appearance, social traits, expression) and the input image (e.g., viewpoint, illumination). This forces us to rethink the universe of possible solutions to the problem of inverse optics in vision. Second, deep learning models indicate that high-level visual representations of faces cannot be understood in terms of interpretable features. This has implications for understanding neural tuning and population coding in the high-level visual cortex. Third, learning in deep networks is a multistep process that forces theoretical consideration of diverse categories of learning that can overlap, accumulate over time, and interact. Diverse learning types are needed to model the development of human face processing skills, cross-race effects, and familiarity with individual faces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.