Abstract

This paper proposes an identification framework based on a restricted Boltzmann machine (RBM) for crack identification and extraction from images containing cracks and complicated background inside steel box girders of bridges. The original images that include fatigue crack and other background information are obtained by a consumer-grade camera inside the steel box girder. The original images are cut into a number of elements with small size as the input dataset, and a state representation vector is artificially labeled to every image element used for the crack identification. A deep learning model or network consisting of multiple processing RBM layers to learn the abstract features is constructed to match the input image elements with corresponding state representation vectors. Next, a three-layer RBM with 500; 500; and 2,000 hidden units is trained as the hidden layers in the deep learning network. A contrastive divergence learning algorithm is employed for training the deep network to update and obtain the optimal parameters (i.e., the biases and weights). The new input image elements labeled as crack are sorted out and assembled to form an output image. A deep network is modeled through the consumer-grade camera images containing cracks and complicated background information using the proposed approach. The accuracy and ability to identify cracks from new images with different resolutions using the trained deep network are validated. Furthermore, effects of element size on reconstruction error and identification accuracy are investigated. The results show that there exists optimal element size; that is, too small and too large element sizes both increase the reconstruction error and decrease the identification accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call