Abstract
In face representation-based classification methods, we are able to obtain high recognition rate if a face has enough available training samples. However, in practical applications, we only have limited training samples to use. In order to obtain enough training samples, many methods simultaneously use the original training samples and corresponding virtual samples to strengthen the ability of representing the test sample. One is directly using the original training samples and corresponding mirror samples to recognize the test sample. However, when the test sample is nearly symmetrical while the original training samples are not, the integration of the original training and mirror samples might not well represent the test samples. To tackle the above-mentioned problem, in this paper, we propose a novel method to obtain a kind of virtual samples which are generated by averaging the original training samples and corresponding mirror samples. Then, the original training samples and the virtual samples are integrated to recognize the test sample. Experimental results on five face databases show that the proposed method is able to partly overcome the challenges of the various poses, facial expressions and illuminations of original face image.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.