Abstract
To improve the classification accuracy of face recognition, a sparse representation method based on kernel and virtual samples is proposed in this paper. The proposed method has the following basic idea: first, it extends the training samples by copying the left side of the original training samples to the right side to form virtual training samples. Then the virtual training samples and the original training samples make up a new training set and we use a kernel-induced distance to determine M nearest neighbors of the test sample from the new training set. Second, it expresses the test sample as a linear combination of the selected M nearest training samples and finally exploits the determined linear combination to perform classification of the test sample. A large number of face recognition experiments on different face databases illustrate that the error ratios obtained by our method are always lower more or less than face recognition methods including the method mentioned in Xu and Zhu [21], the method proposed in Xu and Zhu [39], sparse representation method based on virtual samples (SRMVS), collaborative representation based classification with regularized least square (CRC_RLS), two-phase test sample sparse representation (TPTSSR), and the feature space-based representation method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.