Abstract
The age factor had a significant impact on human faces, potentially influencing the performance of existing gender classification systems. This research proposed a new method that combined local descriptors such as Local Binary Patterns (LBP) and Local Phase Quantization (LPQ) with Self-Principal Component Analysis (Self-PCA) as a feature extraction technique. The use of Self-PCA was chosen for its ability to address the age factor in human facial images, while also leveraging local descriptors to capture features from these images. The primary focus was to compare the performance of Self-PCA with LPQ+Self-PCA, along with the additional comparison of LBP+Self-PCA, in the task of gender classification using facial images. Euclidean distance served as the classifier, and the evaluation was conducted using the FG-Net and ORL datasets. The combination of LPQ+Self-PCA showed an improvement in accuracy by 57.85% compared to the combination of LBP+Self-PCA, which provided an accuracy of 56.47%. Meanwhile, using Self-PCA alone gave an accuracy of 55.37% on the FG-Net. In contrast, on the ORL dataset, both combinations gave the same accuracy result as Self-PCA, which was 90.14%, for images without blurring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.