Abstract

The recently emerged metal-halide hybrid perovskite (MHP) possesses superb optoelectronic features, which have obtained great attention in solid-state lighting, photodetection, and photovoltaic applications. Because of its excellent external quantum efficiency, MHP has promising potential for the manifestation of ultralow threshold optically pumped laser. However, the demonstration of an electrically driven laser remains a challenge because of the vulnerable degradation of perovskite, limited exciton binding energy (Eb), intensity quenching, and efficiency drop by nonradiative recombinations. In this work, based on the paradigm of integration of Fabry-Perot (F-P) oscillation and resonance energy transfer, we observed an ultralow-threshold (∼250 μWcm-2) optically pumped random laser from moisture-insensitive mixed dimensional quasi-2D Ruddlesden-Popper phase perovskite microplates. Particularly, we demonstrated an electrically driven multimode laser with a threshold of ∼60 mAcm-2 from quasi-2D RPP by judicious combination of a perovskite/hole transport layer (HTL) and an electron transport layer (ETL) having suitable band alignment and thickness. Additionally, we showed the tunability of lasing modes and color by driving an external electric potential. Performing finite difference time domain (FDTD) simulations, we confirmed the presence of F-P feedback resonance, the light trapping effect at perovskite/ETL, and resonance energy transfer contributing to laser action. Our discovery of an electrically driven laser from MHP opens a useful avenue for developing future optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.