Abstract
A thin-film transistor consisting of a ZnO active layer and a ZrO2 insulating layer was fabricated on a tin-doped indium oxide sputtered glass substrate as well as on a SiO2/Si wafer. The ZnO and ZrO2 layers were deposited by a sol–gel, dip-coating procedure. The resultant ZrO2 layer was about 150 nm thick and the ZnO layer 70 nm thick. The ZnO layer consisted of a single-grain thickness while the ZrO2 layer consisted of about 10 nm grains and was rather porous. The multilayered film consisting of ZnO/ZrO2/ITO/glass was transparent with 60–85% transmittance in the visible region and exhibited characteristics of a field-effect transistor. The multilayered film of the ZnO/ZrO2/SiO2/Si wafer was also examined and the behavior of the thin-film transistor was confirmed. The ZrO2 layer deposited on the SiO2/Si wafer minimized leakage through the insulating layer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have