Abstract

PurposeVarious approaches have been made to alter the vibration sensing properties of zinc oxide (ZnO) films to achieve high sensitivity. This paper aims to report the experimental study of the fabrication of precursor molar ratio concentration varied ZnO nanostructures grown on rigid substrates using the refresh hydrothermal method. The effect of these fabricated ZnO nanostructures-based vibration sensors was experimentally investigated using a vibration sensing setup.Design/methodology/approachZnO nanostructures have been grown using low temperature assisted refresh hydrothermal method with different precursor molar concentrations 0.025 M (R1), 0.075 M (R2) and 0.125 M (R3). Poly 3,4-ethylenedioxythiophene polystyrene sulfonate, a p-type material is spun coated on the grown ZnO nanostructures. Structural analysis reveals the increased intensity of the (002) plane and better c-axis orientation of the R2 and R3 sample comparatively. Morphological examination shows the changes in the grown nanostructures upon increasing the precursor molar concentration. The optical band gap value decreases from 3.11 eV to 3.08 eV as the precursor molar concentration is increased. Photoconductivity study confirms the formation of a p-n junction with less turn-on voltage for all the fabricated devices. A less internal resistance of 0.37 kΩ was obtained from Nyquist analysis for R2 compared with the other two fabricated samples. Vibration testing experimentation showed an improved output voltage of the R2 sample (2.61 V at 9 Hz resonant frequency and 2.90 V for 1 g acceleration) comparatively. This also gave an increased sensitivity of 4.68 V/g confirming its better performance when compared to the other fabricated two samples.FindingsPhotoconductivity study confirms the formation of a p-n junction with less turn-on voltage for all the fabricated devices. A less internal resistance of 0.37 kΩ was calculated from the Nyquist plot. Vibration testing experimentation proves an increased sensitivity of 4.68 V/g confirming its better performance when compared to the other fabricated two samples.Originality/valueVibration testing experimentation proves an increased sensitivity of 4.68 V/g for R2 confirming its better performance when compared to the other fabricated two samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call