Abstract

This work aims to examine the two techniques' efficiency for the elimination of malachite green (MG) by photocatalytic degradation and adsorption onto synthesized solid nanomaterials. Three solid samples were prepared as calcium alginate (AG), nanotitania (NT), and nanotitania/calcium alginate composite (TG). The morphological and physicochemical characteristics of the solid nanomaterials were investigated by XRD, TGA, DRS, FTIR, pHPZC, nitrogen adsorption/desorption isotherm, SEM, and TEM. The main experimental conditions were determined for sample dose, shaking time, pH, initial malachite green concentration, temperature, ionic strength, and UV lamp power. The resulting data proved that TG attained the higher adsorption capacity (252.52 mg/g) at 40 °C. The adsorption of MG was well fitted by Langmuir, Temkin, Dubinin-Radushkevich, pseudo-second order, intra-particle diffusion, and Elovich models onto all the prepared samples, confirming the endothermic, spontaneous, and favorable adsorption process. The maximum degradation percent (99.6 %) of MG was achieved by using 1.0 g/L as a catalyst dose, 10 mg/L of initial MG concentration, and 33 W for TG. The photodegradation of MG was well fitted by Eyring–Polanyi and Arrhenius models onto the surface of catalyst. The TG reusability resulted in a decrease in the degradation efficiency by 9.8 %, indicating its great capacity as the first nanotitania/calcium alginate nanocomposite used in removing MG from wastewater by two technologies in the same article.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call